Ju l 2 00 5 EXPERIMENTAL RESULTS FOR THE POINCARÉ CENTER PROBLEM

نویسنده

  • V. BOTHMER
چکیده

We apply a heuristic method based on counting points over finite fields to the Poincaré center problem. We show that this method gives the correct results for homogeneous non linearities of degree 2 and 3. Also we obtain new evidence for Żo la̧dek’s conjecture about general degree 3 non linearities. Introduction In 1885 Poincaré asked when the differential equation y = − x+ p(x, y) y + q(x, y) =: − P (x, y) Q(x, y with convergent power series p(x, y) and q(x, y) starting with quadratic terms, has stable solutions in the neighborhood of the equilibrium solution (x, y) = (0, 0). This means that in such a neighborhood the solutions of the equivalent plane autonomous system ẋ = y + q(x, y) = Q(x, y) ẏ = −x− p(x, y) = −P (x, y) are closed curves around (0, 0). Poincaré showed that one can iteratively find a formal power series F = x2 + y2 + f2(x, y) + f3(x, y) + . . . such that det (

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 21 00 61 v 2 1 9 Ju l 2 00 4 Tachyons and Representations of SO 0 ( 2 , 3 )

We have previously described an embedding of the Poincaré Lie algebra into an extension of the Lie field of the group SO0(1, 4), and we used this embedding to construct irreducible representations of the Poincaré group out of representations of SO0(1, 4). Some q generalizations of these results have been obtained by us i.e. we embed classical structures into quantum structures. Here we report o...

متن کامل

ar X iv : m at h / 06 01 66 7 v 2 [ m at h . A P ] 2 6 Ju l 2 00 6 The linear constraints in Poincaré and Korn type inequalities ∗

We investigate the character of the linear constraints which are needed for Poincaré and Korn type inequalities to hold. We especially analyze constraints which depend on restriction on subsets of positive measure and on the trace on a portion of the boundary.

متن کامل

A ug 2 00 5 A spacetime realization of κ - Poincaré algebra

We study a Hamiltonian realization of the phase space of κ-Poincaré algebra that yields a definition of velocity consistent with the deformed Lorentz symmetry. We are also able to determine the laws of transformation of spacetime coordinates and to define an invariant spacetime metric, and discuss some possible experimental consequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005